Tendons of myostatin-deficient mice are small, brittle, and hypocellular.
نویسندگان
چکیده
Tendons play a significant role in the modulation of forces transmitted between bones and skeletal muscles and consequently protect muscle fibers from contraction-induced, or high-strain, injuries. Myostatin (GDF-8) is a negative regulator of muscle mass. Inhibition of myostatin not only increases the mass and maximum isometric force of muscles, but also increases the susceptibility of muscle fibers to contraction-induced injury. We hypothesized that myostatin would regulate the morphology and mechanical properties of tendons. The expression of myostatin and the myostatin receptors ACVR2B and ACVRB was detectable in tendons. Surprisingly, compared with wild type (MSTN(+/+)) mice, the tendons of myostatin-null mice (MSTN(-/-)) were smaller and had a decrease in fibroblast density and a decrease in the expression of type I collagen. Tendons of MSTN(-/-) mice also had a decrease in the expression of two genes that promote tendon fibroblast proliferation: scleraxis and tenomodulin. Treatment of tendon fibroblasts with myostatin activated the p38 MAPK and Smad2/3 signaling cascades, increased cell proliferation, and increased the expression of type I collagen, scleraxis, and tenomodulin. Compared with the tendons of MSTN(+/+) mice, the mechanical properties of tibialis anterior tendons from MSTN(-/-) mice had a greater peak stress, a lower peak strain, and increased stiffness. We conclude that, in addition to the regulation of muscle mass and force, myostatin regulates the structure and function of tendon tissues.
منابع مشابه
Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis.
Small leucine-rich proteoglycans (SLRPs) regulate extracellular matrix organization, a process essential in development, tissue repair, and metastasis. In vivo interactions of biglycan and fibromodulin, two SLRPs highly expressed in tendons and bones, were investigated by generating biglycan/fibromodulin double-deficient mice. Here we show that collagen fibrils in tendons from mice deficient in...
متن کاملIncreased energy expenditure and leptin sensitivity account for low fat mass in myostatin-deficient mice.
Myostatin deficiency causes dramatically increased skeletal muscle mass and reduced fat mass. Previously, myostatin-deficient mice were reported to have unexpectedly low total energy expenditure (EE) after normalizing to body mass, and thus, a metabolic cause for low fat mass was discounted. To clarify how myostatin deficiency affects the control of body fat mass and energy balance, we compared...
متن کاملEffect of Myostatin Depletion on Weight Gain, Hyperglycemia, and Hepatic Steatosis during Five Months of High-Fat Feeding in Mice
The marked hypermuscularity in mice with constitutive myostatin deficiency reduces fat accumulation and hyperglycemia induced by high-fat feeding, but it is unclear whether the smaller increase in muscle mass caused by postdevelopmental loss of myostatin activity has beneficial metabolic effects during high-fat feeding. We therefore examined how postdevelopmental myostatin knockout influenced e...
متن کاملThe Combined Effect of High-Intensity Interval Training and Metformin on Gene Expression of Myogenin and Myostatin in Skeletal Muscle of Type 2 Diabetic Mice
Background: Myogenin (MyoG) and Myostatin (Mstn) play role in muscle growth and wasting, respectively. The present study aimed to investigate the combined effect of High-intensity Interval Training (HIIT) and Metformin drug (Metf) on gene expression of MyoG and Mstn in skeletal muscle of type 2 diabetic mice. Methods: 25 mice (C57BL/6) were assigned to two groups, including 1) Control © (n=5),...
متن کاملSkeletal muscle gene expression after myostatin knockout in mature mice.
There is much interest in developing anti-myostatin agents to reverse or prevent muscle atrophy in adults, so it is important to characterize the effects of reducing myostatin activity after normal muscle development. For assessment of the effect of loss of myostatin signaling on gene expression in muscle, RNA from mice with postdevelopmental myostatin knockout was analyzed with oligonucleotide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 1 شماره
صفحات -
تاریخ انتشار 2008